Linear Models for Reductive Group Actions on Affine Quadrics
نویسندگان
چکیده
RÉSUMÉ. — Nous étudions les actions des groupes réductifs sur les quadriques affines complexes dont le quotient est de dimension 1. Une telle action est dite linéarisable si elle est équivalente à la restriction d’une action linéaire orthogonale dans l’espace affine ambiant de la quadrique. Une action linéaire satisfait à certaines conditions topologiques. Nous recherchons si ces conditions sont valables pour des actions générales. Si c’est le cas, il est naturel de se demander si une action donnée possède un modèle linéaire, c’est-à-dire si il existe une action linéaire avec les mêmes types d’orbites et avec des représentations slices équivalentes. Nous montrons qu’un modèle linéaire existe si l’action a un point fixe ou si le groupe d’isotropie principal est connexe. Enfin, nous faisons une classification de toutes les actions linéaires dont le quotient est de dimension 1.
منابع مشابه
Computation of Weyl Groups of G-varieties
Let G be a connected reductive group. To any irreducible G-variety one associates a certain linear group generated by reflections called the Weyl group. Weyl groups play an important role in the study of embeddings of homogeneous spaces. We establish algorithms for computing Weyl groups for homogeneous spaces and affine homogeneous vector bundles. For some special classes of G-varieties (affine...
متن کاملA Harish-Chandra Homomorphism for Reductive Group Actions
Consider a semisimple complex Lie algebra g and its universal enveloping algebra U(g). In order to study unitary representations of semisimple Lie groups, Harish-Chandra ([HC1] Part III) established an isomorphism between the center Z(g) of U(g) and the algebra of invariant polynomials C[t] . Here, t ⊆ g is a Cartan subspace and W is the Weyl group of g. This is one of the most basic results in...
متن کاملEquivariant Vector Bundles on Certain Affine G-Varieties
We give a concrete description of the category of G-equivariant vector bundles on certain affine G-varieties (where G is a reductive linear algebraic group) in terms of linear algebra data.
متن کاملStratifications Associated to Reductive Group Actions on Affine Spaces
For a complex reductive group G acting linearly on a complex affine space V with respect to a characterρ, we show two stratifications ofV associated to this action (and a choice of invariant inner product on the Lie algebra of the maximal compact subgroup ofG) coincide. The first is Hesselink’s stratification by adapted 1-parameter subgroups and the second is the Morse theoretic stratification ...
متن کاملThe automorphism group of an affine quadric
We determine the automorphism group for a large class of affine quadrics over a field, viewed as affine algebraic varieties. The proof uses a fundamental theorem of Karpenko’s in the theory of quadratic forms [13], along with some useful arguments of birational geometry. In particular, we find that the automorphism group of the n-sphere {x0 + · · · + x 2 n = 1} over the real numbers is just the...
متن کامل